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Abstract 

The Dual Contouring algorithm (DC) is a grid-based process used to generate surface meshes from volumetric data. The advantage 

of DC is that it can reproduce sharp features by inserting vertices anywhere inside the grid cube, as opposed to the Marching Cubes 

(MC) algorithm that can insert vertices only on the grid edges. However, DC is unable to guarantee 2-manifold and watertight 

meshes due to the fact that it produces only one vertex for each grid cube. We present a modified Dual Contouring algorithm that 

is capable of overcoming this limitation. Our method decomposes an ambiguous grid cube into a maximum of twelve tetrahedral 

cells; we introduce novel polygon generation rules that produce 2-manifold and watertight surface meshes. We have applied our 

proposed method on realistic data, and a comparison of the results of our proposed method with results from traditional DC shows 

the effectiveness of our method. 
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1. Introduction 

Surface meshing is an invaluable tool and one of the most commonly used methods in scientific research for 

visualizing volumetric data. A surface mesh of a real-world object can be generated in one of two ways: (1) by using 

a scanning device such as the NextEngine 3D Laser Scanner or Microsoft’s Kinect, or (2) by isosurface extraction 

from volumetric data such as MRI or CT using contouring algorithms such as Marching Cubes (MC) [1], Dual 

Contouring (DC) [2] or Dynamic Particle Systems [3]. In both cases, the resulting polyhedral mesh may contain 

geometric errors such as non-manifold edges and/or vertices, holes and intersecting polygons, especially if the surface 
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being meshed is complex. The survey of Ju in [4] discusses the wide range of techniques that have been developed for 

repairing polygonal models.  

Non-manifold geometry is problematic for a variety of situations, such as rendering of refractive surfaces, 

computation of surface normals and curvatures, bounding tetrahedral meshes suitable for finite element analysis and 

fluid simulations, as well as CAD-based manufacturing and 3D printing. The repairing of geometric errors in meshes 

is an active research area and there is no one-fits-all algorithm that can fix all the different types of geometric errors. 

Of course, this is not to say that topologically and geometrically correct surface mesh generation is a poorly researched 

field. Reference [5] presents an extensive review of the many variants of the MC algorithm that have been developed 

over the years. Tight Cocone [6] is another meshing algorithm that guarantees watertight meshes. Marching Tetrahedra 

[7] is another method similar to MC that can produce topologically correct meshes.  

This work focuses primarily on surface meshing with Dual Contouring. DC offers the advantage of producing 

meshes with sharp features. In MC, the newly created vertices are constrained to the edges of the grid while in DC, 

the vertices can be anywhere inside the grid cube. However, the traditional DC algorithm produces non-manifold edges 

and vertices in certain situations. In this work, we present a modified Dual Contouring algorithm that is capable of 

generating watertight and 2-manifold meshes and thereby avoid non-manifold geometric errors in the first place.  

The remainder of this paper is divided into the following sections: Section 2 discusses in general how the traditional 

DC algorithm works and what the current state of the art is. Section 3 describes our proposed solution in detail. Section 

4 describes some of the results of the proposed method and Section 5 discusses the advantage of having geometrically 

correct surface meshes for tetrahedral mesh generation. Section 6 concludes with a discussion of some of the 

limitations of the proposed method. 

2. Dual Contouring 

2.1. An overview of Dual Contouring 

Dual Contouring (DC) is a method used for extracting the surface boundary of an implicit volume. The method is 

dual in the sense that vertices generated by DC are topologically dual to faces in the Marching Cubes (MC) algorithm. 

In DC, a uniform grid is superimposed on the implicit volume. The grid cubes are represented as nodes in an octree 

data structure. For each grid cube intersecting the volume, the eight corners of the cube are assigned inside/outside 

labels, and a quadratic error function (QEF) is defined as: 

∑ −⋅=
2))((][ ii pxNxE                   (1) 

where x is the computed dual vertex or minimizer, and pi and Ni represent the intersections and unit normal, 

respectively, of the volume boundary with the edges of the cube. 

Fig. 1 illustrates the basic concept of QEFs in 2D. The bounding surface of the volume shown in light blue color 

intersects the lower left corner of a square. The lower left corner of the square is marked with a “+” sign indicating 

that it lies inside the volume while the remaining corners of the square are marked with a “-” sign indicating that they 

lie outside the volume. Furthermore, the surface intersects the left and bottom edges of the square at points p0 and p1, 

respectively.  

 

 

 

 

 

 

 

 

 

Fig. 1. Formulation of Quadratic Error Functions. The blue region represents the surface/volume. 
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If a tangent is drawn from points p0 and p1 and extended inside the square, they would intersect each other 

somewhere inside the square at x. This point would be a vertex of the isosurface. Typically, one minimizer is computed 

for each grid cube (in the 3D case) containing a sign change. The minimizer can be anywhere inside the square or 

cube, rather than being restricted to the edges of the square or cube as in MC. This feature allows DC to produce 

meshes with sharp features. The objective function ][xE  can be expressed as the inner product )()( bAxbAx
T

−−  

where A is a matrix whose rows are the normals Ni and b is a vector whose entries are )( pN i ⋅ . The function ][xE  

can then be expanded as 

bbbAxAxAxxE
TTTTT

+−= 2][                  (2) 

where AAT
 is a symmetric 3x3 matrix, bA

T
is a column vector of length three and bb

T
 is a scalar. This 

representation of a QEF can be solved using the QR decomposition [8], and it should be noted that Singular Value 

Decomposition (SVD) [9, 10] can also be employed for solving this system. 

In traditional DC, a recursive method using the three recursive functions cellProc(), faceProc() and edgeProc() is 

used to traverse through the octree during the polygon generation phase. For each minimal edge exhibiting a sign 

change, a quad or two triangles are generated by connecting the minimizers of the four cubes containing the minimal 

edge. 

2.2. Background and literature review 

One of the main disadvantages of DC is that it does not guarantee 2-manifold and intersection-free surfaces. A 

polygonal mesh is considered as being 2-manifold if each edge of the mesh is shared by only two faces, and if the 

neighborhood of each vertex of the mesh is the topological equivalent of a disk. Ju and Udeshi address the issue of 

intersecting triangles in [11] by proposing a hybrid method where dual vertices (inside grid cubes) as well as face 

vertices and edge vertices (inserted on the cube’s face and edges, respectively) are used to create polygons according 

to new polygon generation rules. Zhang et al. in [12] present a topology-preserving algorithm for surface simplification 

using vertex clustering and an enhanced cell representation, but this method is unable to avoid non-manifold edges 

and vertices. Varadhan et al. [13] suggest an approach that combines edge intersection testing, adaptive subdivision, 

and dual contouring to reconstruct thin features. Schaefer et al. use a vertex clustering method in [14], where they 

present an additional topology criterion that must be satisfied to ensure manifoldness.  

Zhang and Qian in [15] take a different approach by first generating a base mesh using standard DC, and then 

analyzing and categorizing the octree leaf cells into 31 topology groups. For ambiguous cubes, multiple minimizers, 

as many as three in some instances, are inserted whereby a new topologically correct mesh is created by reconnecting 

the vertices of the mesh with the newly inserted minimizers. In [16], Zhang and Qian decompose ambiguous cubes 

into twelve tetrahedral cells, each having one minimizer, and construct a series of polygons and polyhedrons to create 

tetrahedral meshes. This method can avoid topological ambiguities in tetrahedral meshes but does not produce surface 

meshes.  

Our proposed method uses an approach similar to that in [16] by decomposing an ambiguous cube into several 

tetrahedral cells. In this work, we introduce novel polygon generation rules that result in 2-manifold and watertight 

triangular surface meshes. 

3. Watertight and 2-manifold Dual Contouring 

Our proposed method begins the same way as in traditional Dual Contouring (DC) by superimposing a uniform 

virtual grid onto the implicit volume. Depending on the isovalue chosen, the corners of each cube can have 28 or 256 

possible configurations. By taking rotation and symmetry into account, these configurations can be reduced into 14 

fundamental cases, as shown in Fig. 2. Cases 0, 1, 2, 5, 8, 9 and 11 are simple unambiguous cases, meaning there is 

only one possible surface intersecting the grid cube (no surface for Case 0). Cases 3, 4, 6, 7, 10, 12 and 13 are 

ambiguous, meaning that there is more than one possible surface that intersects the cube. It is the presence of these 

ambiguous cubes, as well as the fact that traditional Dual Contouring produces only one minimizer for each cube, that 

causes non-manifold surfaces to arise. Additionally, in our experiments we have observed that the complement of  
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Fig. 2. The 14 fundamental configurations for a grid cube, as well as complimentary Case 4. 

Case 4 (that is, a situation where the two diagonally opposite corners of the cube are in background and the rest are in 

the foreground) is also responsible for the generation of non-manifold vertices, as shown in Fig. 3. These particular 

non-manifold vertices occur inside the surface mesh. In [17], Sohn shows that a cubic cell can be decomposed into a 

set of tetrahedral cells while preserving the topology of the isosurface inside the cube. However, the number of 

tetrahedral cells created, as well as their shapes and sizes, is dependent on the number of face and body saddle points. 

The tetrahedral decomposition method in [16] is much more advantageous because any ambiguous cube can be 

decomposed into 12 tetrahedral cells of similar shape and size. 

3.1. Tetrahedral decomposition of ambiguous cubes 

The volume is first subdivided into a uniform grid of an appropriate size. An octree whose leaves represent the grid 

cubes is then used for fast parsing of the grid cubes and polygon generation. Each corner of a grid cube is assigned an  

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                                                 (b) 

Fig. 3. Non-manifold vertex due to complimentary Case 4. (a) This is an inside view of the surface mesh with the non-manifold vertex 

highlighted by the red dot. (b) This is a view from outside the surface mesh (rendered transparent). The highlighted polygons share the non-

manifold vertex. The two yellow dots represent the two diagonally opposite corners of the cube and they lie outside the implicit volume.   

Case 0 Case 1 Case 2 Case 3 Case 4 

Case 6 Case 5 
Case 7 Case 8 Case 9 

Case 10 Case 11 Case 12 Case 13 Complimentary 
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Fig. 4. (a, d) Two ways in which a diagonal can be created on the front-most face of an ambiguous cube to generate two tetrahedra. (b) The 

corners of the cube are contiguously inside the volume, (e) the corners of the cube are inside the volume, but not contiguously (c, f). Two 

differing topologies can occur due to different choice of diagonals. 

inside or outside label based on its location in the implicit volume. For each unambiguous cube, one minimizer is 

computed.  

In the case of ambiguous cubes, we follow an approach similar to that of Zhang and Qian in [16] and the ambiguous 

cube is subdivided into a maximum of twelve tetrahedral cells. The center of the cube is a common point for all the 

newly created tetrahedral cells, as shown in Fig. 4(a) and (d). A tetrahedral cell is made up of the center along with 

three corners of a cube face. Each face of the ambiguous cube forms the base of two tetrahedral cells by joining the 

diagonally opposite corners of the face. Fig. 4(b) and (e) illustrates two ways for creating the diagonal, which is further 

explained below:  

• If the two diagonally opposite corners are contiguous with each other through the interior of the face, then 

create a diagonal between the two corners (Fig. 4b). 

• If the two diagonally opposite corners are inside the volume, but not contiguous with each other through the 

interior of the face, then create a diagonal using the other two corners (Fig. 4e). 

• For all other cases, any appropriate diagonal can be used.  

The choice of creating the diagonal is important because the resulting polygonization can lead to topological 

changes. Fig. 4(c) depicts a situation where the two corners of the bottom face of the ambiguous cube are contiguous 

with each other inside the face, and the diagonal is created as shown in Fig. 4(b). Fig. 4(f) shows a situation where the 

two corners of the bottom face of the ambiguous cube are inside the volume, but not contiguous through the interior, 

and the diagonal for the bottom face is created as in Fig. 4(e).  

It is useful to define a few terms at this point. An interior edge is an edge of a tetrahedron that is made up of a 

corner of the parent cube and the center of the cube. A sign change edge is an edge of a tetrahedron or a grid cube 

whose end points have inside and outside labels. A valid tetrahedron is one in which at least one edge is a sign change 

edge. Our proposed strategy makes use of only valid tetrahedra for polygon generation.  

During polygon generation, the centroid of each tetrahedron is used as a minimizer. The method of Zhang and Qian 

in [6] presents two general rules that generate tetrahedra/polygons using the minimizers of unambiguous grid cubes 

Cube center 

(a) (b) (c) 

(d) (e) (f) 

Cube center 
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as well as the minimizers of the tetrahedral cells from ambiguous grid cubes. The effect of incorporating these rules 

into the traditional DC algorithm results in a mesh comprising of both surface and tetrahedral meshes.  

In our strategy, we present novel rules that result in purely surface meshes, rather than tetrahedral meshes. Our 

method is effective in generating 2-manifold meshes and can be easily incorporated into the DC algorithm. We present 

the details of our rules in the next section. 

3.2. Polygon generation 

During the polygon generation phase, we follow the traditional DC approach by analyzing minimal edges as well 

as other sign change edges. Each minimal edge is an edge that is characterized by a sign change and that is also shared 

between four grid cubes. If all four grid cubes sharing that edge are unambiguous, then we create two triangles using 

the four minimizers of the four grid cubes. On the other hand, if any one of the four incident grid cubes is ambiguous, 

we apply the following rules: (1) Minimal Edge Rule, (2) Face Diagonal Rule, and (3) Interior Edge Rule as described 

below:  

Minimal Edge Rule: Create an n-sided polygon, or n-gon, using the minimizers of all the unambiguous cubes and 

tetrahedral cells that contain the minimal edge.  

This rule follows the same concept as in traditional DC: if the minimal edge is a sign-change edge, then there must be 

surface intersecting the minimal edge. We generate the n-sided polygon by linking together the minimizers of 

unambiguous grid cubes and tetrahedral cells that share the minimal edge, and then triangulating the n-gon. Each 

ambiguous grid cube will have exactly two valid tetrahedral cells sharing the minimal edge. It should be noted that 

the resulting n-gon does not necessarily have to be convex. It is also worth mentioning that extra care should be taken 

when using third-party polygon generation algorithms, such as Delaunay tessellation, which have a tendency to 

generate convex polygons. Fig. 5 illustrates the Minimal Edge Rule. In this figure, the black square represents one 

end of the minimal edge that is shared by the four grid cubes. There are two ambiguous grid cubes (colored green) 

and two unambiguous grid cubes (colored grey). The small blue and red squares represent the vertices of the tetrahedral 

cells. The blue and red lines represent the four tetrahedral cells of the two ambiguous grid cubes. All four tetrahedral 

cells share the minimal edge. In Fig. 5, a 6-sided polygon is created by first linking together the minimizers of the two 

unambiguous grid cubes (green circles), as well as the minimizers of the four tetrahedral cells (red and blue circles) 

sharing the minimal edge, and then triangulating the polygon. 

 

Face Diagonal Rule: For any ambiguous cube sharing a face with another cube, if the face diagonal of the shared 

face is a sign change edge, then create a polygon using all the minimizers surrounding the face diagonal.  

Ambiguous grid cubes can share a face with another ambiguous or unambiguous grid cube. In the case of two 

ambiguous cubes sharing a face, if the face diagonal is a sign change edge, then there are four valid tetrahedral cells 

that share the face diagonal. We use the four minimizers to generate a quad, which equates with two triangles. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. An illustration of the Minimal Edge Rule. The two grey cubes are unambiguous cubes and the two green cubes are ambiguous cubes. The 

black square represents one end of the minimal edge. The blue and red squares represent the vertices of the tetrahedral cells. The two blue and 

two red circles represent the minimizers of the tetrahedra incident on the minimal edge.   
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(a)                                                                                               (b) 

Fig. 6. An illustration of the Face Diagonal Rule. The purple square is the shared face between two cubes. Ambiguous cubes are colored green 

and unambiguous cubes are colored black. (a) The case of two ambiguous cubes sharing a face. (b) The case of an ambiguous cube and an 

unambiguous cube sharing a face. 

In the case of an ambiguous cube sharing a face with an unambiguous cube, there are two valid tetrahedral cells 

whose bases comprise the shared face. We use the minimizers of these two tetrahedral cells as well as the minimizer 

of the unambiguous cube and generate a triangle. Fig. 6 illustrates the application of this rule. In Fig. 6(a), the two 

green cubes are the ambiguous cubes while the red and blue lines represent the four tetrahedral cells sharing the face 

diagonal. The face diagonal is a sign change edge. The black cubes are unambiguous. The purple square represents 

the shared face between the two ambiguous cubes. The red and blue round points represent the four minimizers used 

to generate the two yellow triangles. In Fig. 6(b), the green cube is the sole ambiguous cube and the red lines represent 

the two tetrahedral cells making up the shared face (purple square) with a neighboring unambiguous cube. The two 

red round points are the minimizers of the two tetrahedral cells and the blue round point is the minimizer of the 

unambiguous cube in question. The three minimizers are used to generate a triangle (yellow).   

 

Interior Edge Rule: For a sign-change interior edge of a tetrahedral cell which has one end point that is also shared 

with the minimal edge, create a polygon using the minimizers of all the tetrahedral cells of the parent cube that share 

the sign-change interior edge.  

An interior edge can be shared by multiple tetrahedral cells. If the interior edge is a sign-change edge, then it 

follows that there is a surface intersecting the interior edge, and this surface can be constructed using the minimizers 

of the surrounding tetrahedral cells. Fig. 7 depicts the Interior Edge Rule. In this figure, there is one ambiguous grid  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. An illustration of the Interior Edge Rule. The black squares represent the minimal edge. The red squares depict the vertices of the four 

tetrahedral cells incident on the minimal edge: the vertices of the minimal edge are also vertices of two tetrahedral cells. The bottom black square 

and orange square make up the sign-change interior edge. The red lines represent the four tetrahedral cells that share the sign-change edge. The 

blue round points are the minimizers of the tetrahedral cells that are used to create a polygon. 
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cube (green) and three unambiguous grid cubes (grey). The center of the ambiguous cube (orange square) is a shared 

vertex for all the tetrahedral cells. The small red squares are the vertices of the tetrahedral cells. The two black squares 

make up the minimal edge. The interior edge with a sign-change edge in this figure is made of the bottom black square 

and the center of the cube (orange square). The red lines represents four tetrahedral cells that share the sign change 

interior edge. The blue round points are the minimizers of the tetrahedral cells. A polygon is created using these four 

minimizers. 

3.3. Detection of non-manifold edges and vertices and boundary edges 

The proposed method is a modified Dual Contouring algorithm that can produce 2-manifold and watertight surface 

meshes. In the course of this work, we did not rely only on visual inspection to detect the presence or absence of non-

manifold edges and vertices and boundary edges. We used MeshLab [18] to detect the presence or absence of non-

manifold edges and vertices and boundary edges. MeshLab is an open source mesh processing tool that makes 

extensive use of the VCG (Visualization and Computer Graphics) Library (http://vcg.isti.cnr.it/vcglib/). 

4. Results and discussion 

We have presented a modified version of the Dual Contouring algorithm that is capable of overcoming some of the 

limitations of traditional DC. Our proposed method uses tetrahedral decomposition of ambiguous cubes to generate 

2-manifold and watertight surface meshes.  

Fig. 8(a) shows a non-manifold vertex that was created due to a cube exhibiting the complimentary Case 4 

configuration using traditional DC. Fig. 8(b) shows the 2-manifold tube-like mesh replacing the non-manifold vertex 

using our proposed method. Fig. 8(c) shows another example of a non-manifold vertex created using traditional DC, 

and Fig. 8(d) shows that it has been replaced by a mesh that is separate and not tubular using the proposed method.  

We have also applied our proposed algorithm on a digital atlas [19] of deep brain structures, specifically the basal 

ganglia and thalamus, created using serial histological data. This atlas is in MINC 2.0 (Medical Imaging NetCDF) 

format and contains a total of 123 labeled structures. The atlas consists of 334x334x334 voxels with a stepsize of 

0.3mm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Two examples of a non-manifold vertex being replaced by a 2-manifold mesh. (a, c) shows two different  non-manifold vertices generated 

using traditional DC, (b, d) shows their corresponding 2-manifold solutions generated using the proposed method. 

(a)                                                                          (b) 

(c)                                                                          (d) 
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Fig. 9. Surfaces generated from a digital deep brain atlas using the proposed method without morphological preprocessing. (a) Globus Pallidus 

(b) Globus Pallidus Internal (c) Globus Pallidus External (d) Nucleus lateropolaris thalami (e) Nucleus fasciculosus thalami (f) Subthalamic 

Nucleus. 

We have applied both traditional DC and our proposed method to generate surface meshes of deep brain structures 

in two experiments. In the first experiment, the atlas data was not preprocessed in any way. Fig. 9 shows the resulting 

surface meshes generated by the proposed method. In all cases, the resulting meshes are 2-manifold and watertight. 

Table 1 lists the names of the atlas labels and their corresponding number of vertices and triangles and number of non-

manifold edges and vertices for both traditional DC and the proposed method. The number of vertices and triangles 

for meshes generated by the proposed method is significantly higher than the corresponding meshes generated using 

traditional DC. This is because the proposed method inserts multiple minimizers (as many as twelve in some cases) 

in ambiguous cubes using tetrahedral decomposition, and results in an increase in the number of triangles and vertices. 

We performed a second experiment on the same deep brain structures using both traditional DC and the proposed 

method. For this experiment, some preprocessing was performed on the atlas data: Each deep brain structure was 

separated and binarized into a single volume. A crude smoothing was performed using the binary morphological 

operations opening and closing. The structuring element was a cube of size 3x3x3. The sequence of morphological 

     Table 1. A comparison between traditional DC and the proposed method using unpreprocessed data 

   Traditonal DC Proposed method 

 Atlas 

label 

Structure name Number of 

vertices/tris 

Number of 

non-manifold 

edges/vertices 

Number of 

vertices/tris 

Number of 

non-manifold 

edges/vertices 

Fig. 9(a) 05 Globus Pallidus 26068/53460 656/70 35750/72670 0/0 

Fig. 9(b) 11 Globus Pallidus Internal 23396/48088 642/67 32369/66018 0/0 

Fig. 9(c) 12 Globus Pallidus Externa 26408/53644 453/39 32707/66226 0/0 

Fig. 9(d) 26 Nucleus lateropolaris thalami 13401/27424 333/31 18123/36806 0/0 

Fig. 9(e) 27 Nucleus fasciculosus thalami 4971/10096 82/9 6231/12490 0/0 

Fig. 9(f) 39 Subthalamic Nucleus 9939/20152 148/8 12006/24276 0/0 

                      (a)                                                                                (b)                                                                          (c) 

                             (d)                                                                       (e)                                                                                     (f) 
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Fig. 10. Surfaces generated from a digital deep brain atlas using the proposed method with morphological preprocessing. (a) Globus Pallidus (b) 

Globus Pallidus Internal (c) Globus Pallidus External (d) Nucleus lateropolaris thalami (e) Nucleus fasciculosus thalami (f) Subthalamic Nucleus. 

The different structures were separated and binarized into individual volumes, and then preprocessed using morphological operations. 

operations were closing, followed by opening. This preprocessing was done to considerably simplify the topology of 

the volume. Fig. 10 shows the resulting meshes generated by the proposed method. Table 2 lists the names and labels 

of the structures, as well as the number of vertices and triangles, and the number of non-manifold edges and vertices 

for the meshes of both traditional DC and the proposed method.  

The purpose of this second experiment is to show that even after preprocessing, traditional DC is unable to produce 

2-manifold meshes in almost all cases, with Fig. 10(e) being the exception. Preprocessing using morphological 

operations greatly simplifies the topology of the surface. That is why there are fewer non-manifold edges and vertices 

in the meshes generated using traditional DC. The simplified volume therefore contains fewer ambiguous cubes. So 

the number of vertices and triangles in the meshes generated by the proposed method are not significantly higher than 

the number of vertices and triangles of the meshes generated by traditional DC. In the case of Fig. 10(e), the 

preprocessing operation simplified the volume to such an extent that there were no ambiguous cubes present, and 

therefore, the proposed method behaved exactly like traditional DC. For the other structures, the proposed method  

     Table 2. A comparison between traditional DC and the proposed method using preprocessed data 

   Traditonal DC Proposed method 

 Atlas 

label 

Structure name Number of 

vertices/tris 

Number of 

non-manifold 

edges/vertices 

Number of 

vertices/tris 

Number of 

non-manifold 

edges/vertices 

Fig. 10(a) 05 Globus Pallidus 16858/33712 2/0 16890/33776 0/0 

Fig. 10(b) 11 Globus Pallidus Internal 15736/31480 7/0 15847/31698 0/0 

Fig. 10(c) 12 Globus Pallidus Externa 20411/40828 7/0 20506/41016 0/0 

Fig. 10(d) 26 Nucleus lateropolaris thalami 9608/19212 3/0 9657/19314 0/0 

Fig. 10(e) 27 Nucleus fasciculosus thalami 3550/7092 0/0 3550/7092 0/0 

Fig. 10(f) 39 Subthalamic Nucleus 8165/16324 1/0 8181/16358 0/0 

                      (a)                                                                              (b)                                                                                   (c) 

                      (d)                                                                               (e)                                                                                       (f) 



 Author name / Procedia Engineering 00 (2016) 000–000 11 

Table 3. Mesh quality for meshes generated by the proposed method using unpreprocessed data and preprocessed data. 

  Meshes from unpreprocessed data Meshes from preprocessed data 

Atlas 

label 

Structure name Average Radius ratio 

(Best/Worst) 

No of tris (No of 

tris with radius 

ratio <= 0.2) 

Average Radius ratio 

(Best/Worst) 

No of tris (No of 

tris with radius ratio 

<= 0.2) 

05 Globus Pallidus 0.744 (1.0/0.00060288) 72670 (503) 0.782 (1.0/0.0629017) 33776 (102) 

11 Globus Pallidus Internal 0.741 (1.0/0.00013993) 66018 (482) 0.781 (1.0/0.0111115) 31698 (82) 

12 Globus Pallidus Externa 0.747 (1.0/0.00012822) 66226 (487) 0.775 (1.0/0.0461131) 41016 (144) 

26 Nucleus lateropolaris thalami 0.745 (1.0/0.00527279) 36806 (271) 0.781 (1.0/0.0122761) 19314 (78) 

27 Nucleus fasciculosus thalami 0.756 (1.0/0.00026428) 12490 (81) 0.784 (1.0/0.0002641) 7092 (29) 

39 Subthalamic Nucleus 0.747 (1.0/0.00241204) 24276 (155) 0.778 (1.0/0.0246822) 16358 (60) 

 

generated meshes that are completely 2-manifold and watertight. 

Fig. 11 shows all the anatomical structures of Fig. 9 superimposed over an XY slice of the digital deep brain atlas. 

The atlas itself is rendered in gray scale.  

A commonly used metric to describe the quality of triangles in surface meshes is the radius ratio circin rr2  [20] 

where rin is the radius of the circle inscribed in the triangle, and rcirc is the radius of the circumscribing circle. A value 

close to 1 indicates a very good quality triangle (similar to an equilateral triangle) and a value near zero indicates a 

poor quality triangle (a triangle which is collapsing to an edge). The average values for the structures in Fig. 9 and 

Fig. 10 are reported in Table 3. Also included in Table 3 are the number of triangles whose ratio values fall below a 

threshold (0.2 in this case), as well as the best and worst values. As can be seen, there are a number of triangles whose 

radius ratios are less than ideal. Most of these poor quality triangles are created by the Minimal Edge Rule. As 

mentioned before, the n-gon created in this rule does not necessarily have to be convex. In our implementation, we 

used an ad-hoc method to triangulate the n-gon but this triangulation method is not configured towards producing high 

quality triangles as Delaunay-based methods do. However, Delaunay-based tessellation methods tend produce convex 

triangulations and enforcing the n-gon to be always convex can introduce non-manifold edges in the resulting surface 

mesh. 

5. Tetrahedral mesh generation 

One type of mesh that is commonly used in engineering and biomedical research is the tetrahedral mesh. 

Tetrahedral mesh generation can be classified [21] into the following four categories: (1) Octree-based, (2) Delaunay, 

(3) Advancing Front and (4) Optimization-based. Among these categories, Delaunay based techniques are the most 

frequently used. In many applications, an initial surface mesh, known as a piecewise linear complex (PLC) that 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. The anatomical structures of Figure 10 superimposed over a slice along the XY plane (Z = 163) of the digital atlas. The atlas is depicted 

in gray scale, and the mesh coloring is as follows: Globus Pallidus (blue), Globus Pallidus Internal (green), Globus Pallidus External (purple), 

Nucleus lateropolaris thalami (orange), Nucleus fasciculosus thalami (yellow) Subthalamic Nucleus (brown). 
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Fig. 12. Tetrahedral meshes created using the surface mesh of the Nucleus lateropolaris thalami (atlas label 26) as the input PLC. (Left) coarse 

tetrahedralization (Right) Finer tetrahedralization. 

coincides with the boundary of the problem domain is used as an initial starting point for the tetrahedralization process. 

In such cases, the user has to ensure (either manually or by using mesh editing software) that the input surface mesh 

does not contain geometric errors such as holes, slivers, intersecting triangles and non-manifold elements.  

Software such as TetGen [22] and the opensource library CGAL (Computational Geometry Algorithms Library) 

[23] are able to generate tetrahedral meshes from an input PLC using Delaunay-based methods. Fig. 12 shows two 

cross-sections of tetrahedral meshes generated using TetGen, using the surface mesh of the Nucleus lateropolaris 

thalami (Fig. 9(d)) as input. The purple colored triangles represent the tetrahedral elements and the blue colored 

triangles represent the input surface mesh. Fig. 12 (left) shows a coarse tetrahedralization (when the edge-radius ratio 

is set to 1.5) and Fig. 12 (right) shows a finer tetrahedralization (when the edge-radius ratio is set to 1.0). Although 

TetGen and CGAL both provide facilities for mesh refinement and optimal tetrahedralization, none of those facilities 

were utilized during the generation of the meshes in Fig. 12. The main purpose of this section is to emphasize the fact 

that the surface meshes generated using our proposed methodology are error free (2-manifold, watertight and 

intersection free) and can be readily used in the generation of tetrahedral meshes. 

6. Limitations and conclusions  

The traditional Dual Contouring (DC) algorithm can be made to use adaptive as well as non-adaptive octrees. In 

the adaptive approach, the grid cubes can be of different sizes (different levels of the octree) whereas in the non-

adaptive approach, all the grid cubes are of the same size (lowest level of the octree). One of the limitations of our 

proposed solution is that it is only applicable in non-adaptive octrees where a minimal edge will always have four grid 

cubes sharing the edge.  

Another limitation of our proposed solution is that it assumes that minimizers are always inside their respective 

grid cubes. This is not an issue in the case of the tetrahedral cells because we use their centroids as minimizers. In the 

case of grid cubes, the minimizers are computed from Quadratic Error Functions, and the method used to solve these 

QEFs may be a factor. In certain cases, the QR decomposition or SVD may result in the minimizer being placed 

outside its grid cube. This allows the resulting mesh to have a smoother appearance, but also results in the mesh 

containing intersecting triangles and/or cracks. Schmitz et al. uses an iterative particle-based method to compute 

minimizers in [24] which results in good approximations of the isosurface, but does not guarantee a solution. In our 

solution, we restrict minimizers to remain within their respective cubes, and this gives the resulting meshes a more 

blocky appearance.  

We have presented a modified Dual Contouring algorithm that is capable of generating 2-manifold surface meshes. 

Since non-manifoldness occurs due to the presence of ambiguous grid cubes, we proposed a method to subdivide an 

ambiguous cube into tetrahedral cells. The centroid of these tetrahedral cells are used as minimizers, and allows an 

ambiguous cube to have multiple minimizers. We have also presented novel polygon generation rules that result in 2-

manifold surfaces.  

We have presented two sets of results using unpreprocessed data and preprocessed data. For both sets of data, we 

applied traditional DC and the proposed method to generate surface meshes. We used the facilities in MeshLab, instead 
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of relying on visual inspection, to confirm the presence or absence of boundary edges and non-manifold edges and 

vertices. In both cases, our proposed method produced meshes that were 2-manifold and watertight, while traditional 

DC produced meshes with non-manifold edges and vertices. Our proposed strategy is simple and effective, and can 

be easily integrated into the traditional Dual Contouring algorithm. The resulting surface meshes are error free, and 

can easily be used for the generation of tetrahedral meshes.  
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